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Introduction 

The purpose of this model was to explore the potential of using “smart windows” that 

filter sunlight while allowing certain wavelengths of daylight to penetrate a window in lieu of 

solid barriers such as curtains that effectively block both visible and UV spectrum light. Using a 

stochastic compartmental model that has been used for several previous studies examining the 

transmission of MRSA in intensive care units (ICUs), this model estimates the impact on 

transmission of the increased ambient daylight exposure caused by these windows. 

Methods 
Model Structure: 

The simulated ICU was adapted from a previously published study by Mietchen, Short, 

Samore and Lofgren, 20191 which has been used in a number of other studies examining the 

dynamics of MRSA infection in ICUs2 and the estimation of the effect of interventions3. Briefly, 

the unit is a simulated 18-bed ICU, with healthcare workers (HCWs) being comprised of six 

intensive care nurses and one dedicated intensivist. Each nurse is assigned to three patients, 

and treats only those three patients, while the intensivist sees all patients in the ICU – this 

assumption is a conservative one in terms of the estimated effect of any intervention (see 1). 

The structure of this model is shown in Figure 1. 

Figure 1. Schematic representation of the compartmental flow of a mathematical model of methicillin-
resistant Staphylococcus aureus (MRSA) acquisition with a single type of staff. Solid arrows indicate 
possible transition states, while dashed arrows indicate potential routes of MRSA contamination or 
colonization (transition parameters found in Table 1). Healthcare staff are classified as uncontaminated 
(SU) or contaminated (Sc), while patients are classified as uncolonized (PU) or colonized (PC). Model 
equations are found in Table S1 

Sυ

Pυ Pc

Sc



Hospital staff are either uncontaminated (SU) or contaminated (SC), representing 

infectious material on their hands or person. Patients are either uncolonized (PU) or colonized 

(PC). Patients move from uncolonized to colonized based on encountering a contaminated 

healthcare worker, and an uncontaminated healthcare worker becomes contaminated by 

treating a colonized patient and picking up infectious material on their hands or other body 

sites. They may subsequently become uncontaminated by doffing contaminated PPE and/or 

washing their hands. A simplified version of this flow is shown in Figure 2. The equations that 

govern this model may be found in 1. 

 
Figure 2. Schematic representation of a Metapopulation model of methicillin-resistant Staphylococcus 
aureus (MRSA) acquisition (transition parameters found in Table 1). Patients (blue) are treated by a 
single assigned nurse (orange). A single physician (red) randomly treats all patients.  
 

Model Parameterization: 

 Parameter values were obtained predominantly from a previously published model of 

MRSA transmission in an ICU based on data from a large, multicenter clinical trial4,5. The values 

of these parameters can be found in Table 1. Contact rates between patients and healthcare 

workers were represented as direct care tasks per hour for each healthcare worker type (i.e. 

nurses and the intensivist). A direct care task is defined as the physical interaction of a 

healthcare worker with the patient or their surrounding environment, which helps account for 

the possibility of fomite-mediated transmission6. Effective hand-decontaminations per hour (ι) 

were calculated by the number of direct care tasks and taking into consideration the 

compliance rate and handwashing efficacy. Effective gown and glove changes per hour (τ) were 

calculated based on the number of visits to a patient per hour and a compliance rate – changing 

gowns and gloves was assumed to be 100% effective at removing contamination from a 

healthcare worker. 

 

 



Model Scenarios: 

A baseline scenario, based on previously published work, assumes no daylight surface 

decontamination processes – i.e. blinds or another method prevents the ambient level of 

daylight in a room from ever reaching a biologically relevant level. Two “Smart Window” based 

scenarios were modeled, both assuming some level of filtered, ambient daylight replacing the 

blocked light in the baseline scenario. This period of ambient light is referred to hereafter as the 

“decontamination period”. The first scenario assumes a decontamination period of 0.85 

hours/day, representing the weighted average over 12 months of direct sunlight on a patient’s 

bed, based on simulation results provided by View. The second scenario assumes a slightly 

longer period of 2.53 hours/day, based on the weighted average over 12 months of direct 

sunlight on either a patient’s day as well as other soft surfaces a visitor or other occupant of the 

room may be in – and thus trigger the dimming function of the window when direct sunlight 

strikes. 

Two potential mechanisms by which daylight disinfection/decontamination were 

modeled (for a total of four scenarios). One assumed that daylight primarily cleared existing 

contamination on a patient or their bedside, thus reducing the likelihood that a healthcare 

worker’s hands become contaminated while treating a colonized patient (s). The second 

assumed both this mechanism, as well as disinfecting a patient’s skin post-contamination, 

reducing the likelihood that contact with a contaminated healthcare worker would result in 

colonization (y). In both cases, the effectiveness of daylight was assumed to result in a 98.17% 

reduction in each parameter, based on results from laboratory testing at the University of 
British Columbia. 

There are several attendant assumptions in these scenarios – that the reduction in 

bacterial counts based on lab data results in a proportionate decrease in the potential for 

contamination/colonization (rather than there being thresholds). This assumption is a relatively 

crude approximation of the actual process. The model also assumes all patients and patient 

rooms are functionally identical, and that the yearly average amount of light is constant, rather 

than following seasonal trends. 



Table 1. Parameters for modeling the acquisition of methicillin-resistant Staplylococcus 
aureus in an Intensive Care Unit 
Parameter Parameter Description Parameter Value Source(s) 
r Contact rate between patients and HCWs 4.154 

(# of direct care tasks/hour) 
7,8

rN Contact rate between patients and nurses 
3.973 
(# of nurse direct care 
tasks/hour) 

7,8

rD Contact rate between patients and physician 
0.181 
(# of physician direct care 
tasks/hour) 

7,8

s 
Probability that a HCW’s hands are 
contaminated from a single contact with a 
colonized patient 

0.054 9

y 
Probability of successful colonization of an 
uncolonized patient due to contact with a 
contaminated HCW in metapopulation 
structure 

0.4481 Fitted to 4 

q Probability of discharge 4.39 days-1 4

nu Proportion of admissions uncolonized with 
MRSA 0.9221 4

nc Proportion of admissions colonized with 
MRSA 0.0779 4

i 
Effective hand-decontaminations/hour 
(direct care tasks ´ hand hygiene compliance 
´ efficacy) 

5.740 
(10.682 direct care tasks/hour 
´ 56.55% compliance ´ ~ 95% 
efficacy) 

4,7,8,10  

iN Effective nurse hand-decontaminations/hour 

6.404 
(11.92 direct care tasks/hour ´ 
56.55% compliance ´ ~ 95% 
efficacy) 

4,7,8,10

iD Effective physician hand-
decontaminations/hour 

1.748 
(3.253 direct care tasks/hour ´ 
56.55% compliance ´ ~ 95% 
efficacy) 

4,7,8,10

t Effective gown or glove changes/hour 
(2 ´ # of visits ´ compliance) 

2.445 
(2.957 changes/hour ´ 
82.66% compliance) 

4,9,11 

tN Effective nurse gown or glove changes/hour 
2.728 
(3.30 changes/hour ´ 
82.66% compliance) 

4,9,11

tD Effective physician gown or glove 
changes/hour 

0.744 
(0.90 changes/hour ´ 
82.66% compliance) 

4,9,11

µ Natural decolonization rate 20.0 days-1 12 



Model Implementation 

 The primary outcome of each scenario was the number of incident MRSA acquisitions in 

a single year. The models were stochastically simulated using Gillespie’s Direct Method13 in 

Python 3.6 using the StochPy package14 for 5,000 iterations per scenario. The initial conditions 

for each model were set to have no contaminated healthcare workers, either nurses or the 

physician, and a single colonized patient. The distribution of the acquisitions for each model’s 

5,000 iterations was visualized in R v3.5.1 using the vioplot package15, and the difference 

between them assessed using a Kruskal-Wallis test, as the results of the model were likely to be 

non-normal. 

 

Results 
 The results of the five different scenarios are summarized in Table 2, below. All results 

are reported as the median number of incident MRSA acquisitions per 1,000 Patient-Days. 

 

Table 2. Incident methicillin-resistant Staphylococcus aureus infections in five potential 

scenarios. 
Scenario Acquisitions per 1,000 Patient-Days % Change p-value 

Baseline 8.94 - - 

Dimming for Bed Only    

   Sigma-Only 8.69 -2.8% 0.1 

   Sigma and Psi 8.51 -4.8% 0.006 

    

Dimming for Bed and Seating 
Surfaces 

   

   Sigma-Only 7.94 -11.2% <0.001 

   Sigma and Psi 7.76 -13.2% <0.001 

 

Briefly, all scenarios had a reduction in overall MRSA acquisition rates, with the longer duration 

of the decontamination period (i.e. 0.85 hours/day vs. 2.53 hours/day) having a larger impact 

on the results of the model than which potential mechanisms of action (i.e. reducing HCW 

contamination vs. reducing both HCW contamination and the probability of patient colonization 

given contaminated contact). In all scenarios, the distribution of results are heavily weighted 

toward zero, given the small numbers and the underlying assumption of the model that the ICU 

is otherwise relatively effectively controlling MRSA infections, with a long tail of rare but serious 

outbreaks. The scenarios assuming the presence of smart windows had markedly shorter tails 

(Figures 3 and 4). 

 



Figure 3. Distribution of 5,000 simulated methicillin-resistant Staphylococcus aureus acquisitions over a single year 
in an intensive care unit, with 0.85 hours/day of ambient daylight. Solid black bars represent the median result, 
while the “Hersey’s Kiss” is a kernel-smoothed density of the entire distribution. 



Figure 4. Distribution of 5,000 simulated methicillin-resistant Staphylococcus aureus acquisitions over a single year 
in an intensive care unit, with 2.53 hours/day of ambient ĚĂǇlight. Solid black bars represent the median result, 
while the “Hersey’s Kiss” is a kernel-smoothed density of the entire distribution. 

Discussion and Conclusion 
The results of these simulations suggest that the use of smart windows that effectively 

filter sunlight while allowing ƐŚŽƌƚĞƌ�ǁĂǀĞůĞŶŐƚŚ͕�ŚŝŐŚĞƌ�ĞŶĞƌŐǇ ĚĂǇůŝŐŚƚ to penetrate the 

window may have a modest but clinically meaningful impact on healthcare-associated 

infections, by providing a period of consistent, passive sanitization and sterilization of both the 

patient and their immediate environment. While these results are statistically significant in a 

sample of 5,000 simulated ICUs per scenario, it is unlikely that any given ICU or even multiple 

ICUs in the same facility will have the power to detect the resultant changes, especially for the 

more conservative scenarios, such as windows only benefitting the room 0.85 hours/day or 

only impacting the transmission of fomites to healthcare worker hands.  

As discussed above, and as with all simulation models, there are several caveats and 

assumptions that go into these results. The proposed mechanism of action modeled here is 

relatively course, assuming a linear relationship between a reduction in organisms and the 

potential for contamination/colonization. Similarly, this model focuses primarily on the direct 

interaction between a healthcare worker and a patient and/or that patient’s immediate 

environment, with environmental contamination elsewhere in the room assumed to represent 

a negligible source of infection risk. Should this not be the case, the model may fail to fully 

capture the impact of an increased amount of ambient�ĚĂǇlight. Similarly, this model considers 



only a single organism, while the actual impact of the proposed windows should impact all 

organisms susceptible to radiation�ŝŶ�ƚŚĞ�ŶĞĂƌ�hs�ƌĂŶŐĞ. This was chosen to leverage an existing 

implemented and validated model, and S. aureus infections are among the most common 

infections in hospitals. Finally, the decontamination period is, for simplicity, a constant based 

on the average light a room receives over the course of the year, rather than fluctuating 

seasonally, or varying by the facing of each individual room. The former can be addressed 

within the code for the model. 

Several of the scenarios in this model are based on fairly conservative assumptions, 

both in terms of the model itself (i.e. nurses are strictly assigned to their three patients) and in 

some of the scenarios, where the mechanisms by which ambient�ĚĂǇlight for longer periods of 

the day are assumed to be both relatively brief and have fairly restrictive mechanisms of action. 

Despite this, even in those scenarios, reductions in cases can be seen. In scenarios that allow 

for longer periods in which the shades of a room might be drawn or make slightly less 

conservative assumptions about the ways in which increased ambient ĚĂǇlight impact the 

transmission dynamics of S aureus, these reductions begin to exceed 10%. These results may be 

useful for informing power calculations for empirical studies, initial estimates for cost-

effectiveness models, or a baseline for more granular modeling efforts. Overall, this study 

suggests that the addition of smart windows to ICU rooms may present a compelling passive 

and horizontal intervention to supplement other infection control efforts.  
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